搜索

245 结果

清除过滤器
  • 2025年7月17日 / Gemini

    Build with Veo 3, now available in the Gemini API

    Veo 3, Google’s latest AI video generation model, is now available in paid preview via the Gemini API and Google AI Studio. Unveiled at Google I/O 2025, Veo 3 can generate both video and synchronized audio, including dialogue, background sounds, and even animal noises. This model delivers realistic visuals, natural lighting, and physics, with accurate lip syncing and sound that matches on-screen action.

    Build with Veo 3, now available in the Gemini API and Google AI Studio
  • 2025年7月16日 / AI

    Unlock Gemini’s reasoning: A step-by-step guide to logprobs on Vertex AI

    The `logprobs` feature has been officially introduced in the Gemini API on Vertex AI, provides insight into the model's decision-making by showing probability scores for chosen and alternative tokens. This step-by-step guide will walk you through how to enable and interpret this feature and apply it to powerful use cases such as confident classification, dynamic autocomplete, and quantitative RAG evaluation.

    logprobs_meta
  • 2025年7月16日 / Cloud

    Stanford’s Marin foundation model: The first fully open model developed using JAX

    The Marin project aims to expand the definition of 'open' in AI to include the entire scientific process, not just the model itself, by making the complete development journey accessible and reproducible. This effort, powered by the JAX framework and its Levanter tool, allows for deep scrutiny, trust in, and building upon foundation models, fostering a more transparent future for AI research.

    Stanford Marin project in JAX
  • 2025年7月16日 / Gemini

    Simplify your Agent "vibe building" flow with ADK and Gemini CLI

    The updated Agent Development Kit (ADK) simplifies and accelerates the process of building AI agents by providing the CLI with a deep, cost-effective understanding of the ADK framework, allowing developers to quickly ideate, generate, test, and improve functional agents through conversational prompts, eliminating friction and keeping them in a productive "flow" state.

    ADK + Gemini CLI: Supercharge Your Agent Building Vibe
  • 2025年7月14日 / Cloud

    Enterprise truth in action: Apigee API hub fueling powerful Developer Portals

    The Apigee API hub and Developer Portals are distinct but interconnected parts of the Apigee platform that help organizations discover and manage APIs for different personas, unlocking API potential and accelerating innovation.

    Enterprise Truth in Action: API hub Fueling Powerful Developer Portals
  • 2025年7月14日 / Gemini

    Gemini Embedding now generally available in the Gemini API

    The Gemini Embedding text model is now generally available in the Gemini API and Vertex AI. This versatile model has consistently ranked #1 on the MTEB Multilingual leaderboard since its experimental launch in March, supports over 100 languages, has a 2048 maximum input token length, and is priced at $0.15 per 1M input tokens.

    Gemini Embedding now generally available in the Gemini API
  • 2025年7月10日 / Gemini

    宣布推出 GenAI Processors:构建强大而灵活的 Gemini 应用

    GenAI Processors 是 Google DeepMind 推出的一个全新开源 Python 库,旨在为从输入处理到模型调用和输出处理之间的所有步骤提供一致的“Processor”接口,以实现无缝链接和并发执行,从而简化 AI 应用的开发,特别是那些用于处理多模态输入且需要实时响应的应用。

    Announcing GenAI Processors: Streamline your Gemini application development
  • 2025年7月10日 / Cloud

    借助 Firebase Studio 推动代理式 AI 开发进程

    Firebase Studio 迎来多项更新,其中包括全新代理模式、对模型上下文协议 (MCP) 的基础支持,以及 Gemini CLI 集成。所有更新都旨在重新定义 AI 辅助开发,帮助开发者通过单一提示创建全栈应用,并将强大的 AI 功能直接集成至开发者的工作流中。

    Advancing agentic AI development with Firebase Studio
  • 2025年7月9日 / Gemma

    T5Gemma:全新 Encoder-Decoder 架构的 Gemma 模型系列

    作为 Encoder-Decoder LLM 的新系列,T5Gemma 通过转换和调整基于 Gemma 2 框架的预训练 Decoder-only 模型开发而成,与其对应的 Decoder-only 模型相比,具有更出色的性能和效率,尤其适用于需要深度输入理解的任务,例如摘要和翻译。

    T5Gemma: A New Collection of Encoder-Decoder Gemma Models
  • 2025年7月7日 / Gemini

    Gemini API 中的批量模式:以更低的成本处理更多内容

    Gemini API 新推出的批量模式专为高吞吐量、对延迟时间不敏感的 AI 负载而设计,通过执行调度和处理来简化大型作业,并使数据分析、批量内容创建和模型评估等任务更具成本效益和可扩展性,从而让开发者能高效地处理大量数据。

    Scale your AI workloads with batch mode in the Gemini API